
Ignite Labs Documentation

Jack Ceroni, Abdullah Hadi

May 19, 2020

Contents:

1 Getting Started 1

2 Tutorials and Projects 3
2.1 Getting Started With Inferno: Final Completion and Tree Density 3

3 API Reference 11

4 Release Logs 13

5 Citing 15

6 Credits 17

7 Indices and tables 19

i

ii

CHAPTER 1

Getting Started

1

Ignite Labs Documentation

2 Chapter 1. Getting Started

CHAPTER 2

Tutorials and Projects

Welcome to the Ignite Labs tutorials page. Here, we will showcase different simulations and projects that make use of
the tools in the Ignite Labs library.

2.1 Getting Started With Inferno: Final Completion and Tree Density

In this introductory tutorial, we are going to show how to use Inferno to look at the relationship between tree density,
and final completion, for a simple square-lattice based forest, and a simple cellular-automation simulator. [1]

First, let’s go over a few definitions. To start, a forest is defined as some graph, 𝐺 = (𝑉,𝐸). Each node corresponds
to some spatial position within the forest, and the edges specify how fire is allowed to spread over the nodes. For our
simulation, we will be considering a very basic graph called a square lattice. We define a square lattice as follows:
given some number 𝑁 , which we call the length of our lattice, we define a set 𝑁 , each 𝑁 nodes such that for 𝐺 ∈ 𝐻 ,
we have:

𝐸(𝐺) = {(𝑣𝑛, 𝑣𝑛+1) | 𝑣𝑖 ∈ 𝑉 }

Let’s index the elements of 𝐻 by 𝑖, where 𝐺𝑖 ∈ 𝐻 . We define the vertex set, 𝑉 𝑁
ℓ , of our lattice graph to be:

𝑉 𝑁
ℓ =

𝑁⋃︁
𝑖=1

𝑉 (𝐺𝑖)

Continuing on, we define 𝑣𝑖𝑛 to be the 𝑛-th vertex of the 𝑖-th linear graph. We define the edge-set of our lattice graph,
𝐸𝑁

ℓ , to be:

𝐸𝑁
ℓ =

(︁ 𝑁⋃︁
𝑖=1

𝐸(𝐺𝑖)
)︁

∪ {(𝑣𝑖𝑛 , 𝑣(𝑖+1)𝑛) | 𝑣𝑘𝑛
∈ 𝑉ℓ}

Thus, our square lattice graph of length 𝑁 is given by 𝐺𝑁
ℓ = (𝑉 𝑁

ℓ , 𝐸𝑁
ℓ) looks something like this:

3

Ignite Labs Documentation

So as you can see, our forest graph resembles a grid, with nodes being connected to each other in square cycles. We
can do this fairly easily in Inferno, as a square lattice is one of the built-in graphs.

For our forest, we define a state function, 𝛿(𝑣, 𝑡), for some 𝑣 ∈ 𝑉 (𝐺), and some time-step 𝑡 of our simulation. The
state function is able to map each vertex in the forest to either 1 or 0. If the state function maps a vertex to 1, we say
that at time 𝑡, the node contains a tree.

For the purposes of this simple simulation, we will assume that 𝛿(𝑣, 0) = 𝛿(𝑣, 𝑡), for all 𝑡. Basically, we assume
that no new trees are growing (or somehow appearing) in our forest during the simulation. This simplifies our model
greatly. Now, let’s consider what the values of 𝛿(𝑣, 𝑡) will be for each 𝑣 ∈ 𝑉ℓ. It is possible to manualy specify
the exact value of the function at every node, but for large graphs, this becomes cumbersome. Thus, Inferno allows
us to randomize placement of trees onto our graph. Specifically, for some arbitrary forest, 𝑉 , we know that the total
number of trees in this forest will be given as 𝜌(𝑡), with:

𝜌(𝑡) =
∑︁
𝑣 ∈ 𝑉

𝛿(𝑣, 𝑡)

For all 𝑣𝑛 ∈ 𝑉 . We can thus choose some number 𝜌, and randomly assign 𝛿(𝑣𝑛) = 1 for 𝜌 vertices 𝑣𝑛. Behind the
scenes, the way that Inferno does this is by generating 𝜌 pseudo-random coordinates, (𝑥, 𝑦), with 1 ≤ 𝑥, 𝑦 ≤ 𝑁 ,
and set 𝛿(𝑣𝑥𝑦) = 1 for all these number pairs. We define the tree density, 𝜎, of our graph as “another way” to write
the total number of trees, as it is just the number of trees divided by the number of nodes:

𝜎 =
𝜌

|𝑉 (𝐺)|
This is the number that we will be feeding into our state function, which will be used in the simulation. In addition to
the state function, we also must define an update function which is another function 𝛽 : 𝑉 × 𝑇 → {0, 1}, which
tells us at some time 𝑡, whether some vertex 𝑣 has been “burned” by the simulation. Note that for some vertex 𝑤, it
can only be true that 𝛽(𝑤, 𝑡) = 1 if 𝛿(𝑤, 𝑡) = 1 (basically, a vertex can only “burn” at time 𝑡 if it contains a tree at
time 𝑡). In the simulation of our algorithm, we are going to implement a “cellular-automata-like” update rule, where
for some 𝑤 ∈ 𝑉 , if 𝛽(𝑤, 𝑡) = 1, then 𝛽(𝑥, 𝑡+ 1) = 1 for all 𝑥 ∈ (𝑤). We then define:

𝑈(𝑤) = {𝑥 | 𝑥 ∈ 𝑁(𝑤), 𝛿(𝑥, 𝑡+ 1) = 1}

4 Chapter 2. Tutorials and Projects

Ignite Labs Documentation

Where 𝑁(𝑤) is defined to be the neighbourhood of 𝑤:

𝑁(𝑤) = {𝑣 | 𝑣 ∈ 𝑉 (𝐺), (𝑤, 𝑣) ∈ 𝐸(𝐺)}

In simpler language, fire can spread from a burning vertex to another vertex that is connected to the burning vertex,
if the other vertex contains a tree. This is similar to the idea of a cellular-automaton spreading to grid squares that
are a taxicab distance of 1 away from the original square (the Von Neumann neighbourhood of the original square).
Thus, we call this particular function the Von Neumann cellular-automaton update function (this function is built-into
Inferno as well).

In order for our simulation to actually begin, we are going to have to specify the value of 𝛽(𝑣, 0) for all vertices 𝑣.
We call this set of values (particularly the special case of 𝛽 at time eqaul to 0) the initialization function. For this
simulation, it makes sense for us to chooe some random vertex that contains a tree, and set its initial update function
to one. We can do this eaily in Inferno (as random initialization is a built-in function).

Now, we can turn our attention to the problem we are actually trying to investigate. We are interested in determining
how final completion of our graph changes with increasing tree density. Firstly, we define completion of some forest
graph, at some time 𝐶(𝐺, 𝑡) is defined as:

𝐶(𝐺, 𝑡) =
1

𝜌(𝑡)

∑︁
𝑣 ∈ 𝑉 (𝐺)

𝛽(𝑣, 𝑡)

Thee final completion is a specific instance of the completion, where 𝑡 = 𝑇 , where 𝑇 is the time-step of the simulation
such that (for this specific simulation):

𝛽(𝑣, 𝑇) = 𝛽(𝑣, 𝑇 + 1)

for all 𝑣 ∈ 𝑉 . Basically, the simulation terminates when the graph the update functions reaches a point where it
remains constant for all future times. Note that this is only the termination condition for this specific instance of
the update function, other update functions may remain constant for two or more iterations, and then change, but for
this particular simulation, the update function must yield different parameter values at at least one node on any given
time-step.

With all of this theory now out of the way, we can now begin creating our simulations! We are interested in varying tree
density and plotting it against final completion of our graph. We start by importing all of the necessary dependencies:

Imports the necessary dependencies

import inferno
from matplotlib import pyplot as plt
from tqdm import tqdm

I’m going to use matplotlib to make graphs of the results at the end of the simulation and tqdm to make a nice
looking progeress bar when I run the simulations (this isn’t totally necessary, but I definitely reccomend it). Now, we
can specify some initial variables. Firstly, we need to specify the length of our lattice graph. For this simulation, we
will set that to 30. In addition, in order to calculate the final completion for each value of the tree density, we will need
to run the simulation many times and take the average of those trials. We will set the number of iterations for each
individual value of the tree density to 20. Finally, we create an empty list in which we will store all of the calculated
values:

Defines initial parameters and empty list to store final values

trials = 20
length = 30
y = []

Next, we will define the lattice graph (which, as we said, is one of the graphs that is built into Inferno):

2.1. Getting Started With Inferno: Final Completion and Tree Density 5

Ignite Labs Documentation

Creates the grid

lattice_graph = inferno.sgraph.SquareLatticeGraph(length=length)

Now, with the graph, we can define the big loop that we will use to run the simulation over and over:

for i in tqdm(range(1, length)):
sum = 0
for j in range(0, trials):

Simulation trials happen here

Where we are essentially running through a bunch of possible tree densities (we are going up in units of “length of the
graph”, instead of one-by-one, as we don’t want the simulation to go on forever), for the given number of trials. We
use the variable sum in order to keep track of the outcomes of all our trials, which we then divide by the number of
trials to get the average. Inside the loop, we now begin the simulation. For each trial, we reset the parameters of our
graph. We also define init_number which is the number of trees that burn at time zero, and the tree density:

Resets the graph before each iteration of the simulation

lattice_graph.reset()

Defines the necessary variables

init_number = 1
density = float(i/(length))

We now define our initialization, update, and state functions (since the particular functions we are using are basic, they
are built into Inferno already):

Defines the necessary functions used in the simulation

init_function = inferno.sim.initialize.Random_Init_Number(number=init_number)
state_function = inferno.sim.state.Density_State(density=density)
update_function = inferno.sim.update.Von_Neumann_CA_Basic()

We can now create the simulator object and run the simulation (which will return a simulation object):

Creates the simulation object

simulator = inferno.Simulator(
graph=lattice_graph,
state_function=state_function,
burn_function=update_function,
init_function=init_function,
)

Runs the simulation

results = simulator.simulate(termination=1e14)

Finally, we calculate the final completion of the graph:

Calculates the completion of the final graph

final_graph = results.final_graph

(continues on next page)

6 Chapter 2. Tutorials and Projects

Ignite Labs Documentation

(continued from previous page)

completion = inferno.completion(final_graph)
sum += completion

Now, we exit the second loop and are inside the first loop. We calculate the average completion for all of our trials:

Calculate the average completion for a given density and add it to the final list

y.append(float(sum / trials))

To end this simulation off, we exit the first loop, and graph the results using matplotlib:

Plots the average completion against the tree density

plt.plot([i/length for i in range(1, length)], y)
plt.xlabel("Tree Density")
plt.ylabel("Final Completion")
plt.show()

When we run this simulation, we get a graph that looks something like this:

So we are seeing that as we increase the density of trees, we eventually reach an inflection point where the completion
spikes up and stabilizes for larger values. This kind of work could actually have somer interesting applications when
it comes to fighting fires: if one could determine how close trees are together, then we can determine whether we are
to the left of the inflection point, and can expect the fire to remain controllable, or if it is on the right side, where the
fire can grow to large, uncontrollable sizes very quickly. It also might be interesting to investigate the variance of the
trials for each individual tree density, and maybe come up with metrics that allow us to understand how “volatile” our
forest is (where depending only on the initial point of ignition, the fire can be either a raging inferno or die out very
quickly). We can actually do this fairly easily. Since the variance of some random variable (like final completion) is
given by:

𝜎2 = ⟨𝐶(𝐺, 𝑇)2⟩ − ⟨𝐶(𝐺,𝑇)⟩2

2.1. Getting Started With Inferno: Final Completion and Tree Density 7

Ignite Labs Documentation

All we have to do is sum up the squared value of each value of the final completion, then calculate the expectation
value in the same manner as we calculate the “un-squared” expectation value in the previous simulation. We then plug
the two values into this formula and plot the results, getting a graph that looks something like this:

This suggets that our simulations are the most voaltile and unpredictable when the tree density is a bit over 0.6. There
are practically infinite different scenarios and peices of data that can be learned from even simple simulations like the
ones we did in this tutorial!

By modifying our code, we can investigate several other non-trivial problems. For instance, by making some small
modifications to the pre-existing simulation, we can determine the number of time steps our simulation takes before
it terminates for different treee densities, getting a graph that looks something like this;

8 Chapter 2. Tutorials and Projects

Ignite Labs Documentation

So we get another interesting result: for our simple model, a forst fire will take the longest to finish burning for a tree
density between 0.6 and 0.7. This is only one of many other problems that one can investigate with this extremely
simple model. In the coming tutorials, we will be investigating different problems in the context of more sophisticated
models.

2.1. Getting Started With Inferno: Final Completion and Tree Density 9

Ignite Labs Documentation

10 Chapter 2. Tutorials and Projects

CHAPTER 3

API Reference

11

Ignite Labs Documentation

12 Chapter 3. API Reference

CHAPTER 4

Release Logs

13

Ignite Labs Documentation

14 Chapter 4. Release Logs

CHAPTER 5

Citing

15

Ignite Labs Documentation

16 Chapter 5. Citing

CHAPTER 6

Credits

The development team for the Ignite Labs simulation library consists of the following individuals:

Original Authors

• Jack Ceroni

• Abdullah Hadi

Contributors

Thiss library was created with the support of other open-source initiatives and other individuals that did not directly
contribute to the code-base or research.

17

Ignite Labs Documentation

18 Chapter 6. Credits

CHAPTER 7

Indices and tables

• genindex

• modindex

• search

19

	Getting Started
	Tutorials and Projects
	Getting Started With Inferno: Final Completion and Tree Density

	API Reference
	Release Logs
	Citing
	Credits
	Indices and tables

